SqlToolkit
This will help you getting started with the SqlToolkit. For detailed documentation of all SqlToolkit features and configurations head to the API reference. You can also find the documentation for the Python equivalent here.
This toolkit contains a the following tools:
Name | Description |
---|---|
query-sql | Input to this tool is a detailed and correct SQL query, output is a result from the database. If the query is not correct, an error message will be returned. If an error is returned, rewrite the query, check the query, and try again. |
info-sql | Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. Be sure that the tables actually exist by calling list-tables-sql first! Example Input: “table1, table2, table3”. |
list-tables-sql | Input is an empty string, output is a comma-separated list of tables in the database. |
query-checker | Use this tool to double check if your query is correct before executing it. Always use this tool before executing a query with query-sql! |
This toolkit is useful for asking questions, performing queries, validating queries and more on a SQL database.
Setup
This example uses Chinook database, which is a sample database available
for SQL Server, Oracle, MySQL, etc. To set it up, follow these
instructions,
placing the .db
file in the directory where your code lives.
If you want to get automated tracing from runs of individual tools, you can also set your LangSmith API key by uncommenting below:
process.env.LANGCHAIN_TRACING_V2 = "true";
process.env.LANGCHAIN_API_KEY = "your-api-key";
Installation
This toolkit lives in the langchain
package. You’ll also need to
install the typeorm
peer dependency.
- npm
- yarn
- pnpm
npm i langchain @langchain/core typeorm
yarn add langchain @langchain/core typeorm
pnpm add langchain @langchain/core typeorm
Instantiation
First, we need to define our LLM to be used in the toolkit.
Pick your chat model:
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- Groq
- VertexAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
model: "claude-3-5-sonnet-20240620",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/groq
yarn add @langchain/groq
pnpm add @langchain/groq
Add environment variables
GROQ_API_KEY=your-api-key
Instantiate the model
import { ChatGroq } from "@langchain/groq";
const llm = new ChatGroq({
model: "mixtral-8x7b-32768",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
Add environment variables
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
Instantiate the model
import { ChatVertexAI } from "@langchain/google-vertexai";
const llm = new ChatVertexAI({
model: "gemini-1.5-flash",
temperature: 0
});
import { SqlToolkit } from "langchain/agents/toolkits/sql";
import { DataSource } from "typeorm";
import { SqlDatabase } from "langchain/sql_db";
const datasource = new DataSource({
type: "sqlite",
database: "../../../../../../Chinook.db", // Replace with the link to your database
});
const db = await SqlDatabase.fromDataSourceParams({
appDataSource: datasource,
});
const toolkit = new SqlToolkit(db, llm);
Tools
View available tools:
const tools = toolkit.getTools();
console.log(
tools.map((tool) => ({
name: tool.name,
description: tool.description,
}))
);
[
{
name: 'query-sql',
description: 'Input to this tool is a detailed and correct SQL query, output is a result from the database.\n' +
' If the query is not correct, an error message will be returned.\n' +
' If an error is returned, rewrite the query, check the query, and try again.'
},
{
name: 'info-sql',
description: 'Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\n' +
' Be sure that the tables actually exist by calling list-tables-sql first!\n' +
'\n' +
' Example Input: "table1, table2, table3.'
},
{
name: 'list-tables-sql',
description: 'Input is an empty string, output is a comma-separated list of tables in the database.'
},
{
name: 'query-checker',
description: 'Use this tool to double check if your query is correct before executing it.\n' +
' Always use this tool before executing a query with query-sql!'
}
]
Use within an agent
First, ensure you have LangGraph installed:
- npm
- yarn
- pnpm
npm i @langchain/langgraph
yarn add @langchain/langgraph
pnpm add @langchain/langgraph
import { createReactAgent } from "@langchain/langgraph/prebuilt";
const agentExecutor = createReactAgent({ llm, tools });
const exampleQuery = "Can you list 10 artists from my database?";
const events = await agentExecutor.stream(
{ messages: [["user", exampleQuery]] },
{ streamMode: "values" }
);
for await (const event of events) {
const lastMsg = event.messages[event.messages.length - 1];
if (lastMsg.tool_calls?.length) {
console.dir(lastMsg.tool_calls, { depth: null });
} else if (lastMsg.content) {
console.log(lastMsg.content);
}
}
[
{
name: 'list-tables-sql',
args: {},
type: 'tool_call',
id: 'call_LqsRA86SsKmzhRfSRekIQtff'
}
]
Album, Artist, Customer, Employee, Genre, Invoice, InvoiceLine, MediaType, Playlist, PlaylistTrack, Track
[
{
name: 'query-checker',
args: { input: 'SELECT * FROM Artist LIMIT 10;' },
type: 'tool_call',
id: 'call_MKBCjt4gKhl5UpnjsMHmDrBH'
}
]
The SQL query you provided is:
```sql
SELECT * FROM Artist LIMIT 10;
```
This query is straightforward and does not contain any of the common mistakes listed. It simply selects all columns from the `Artist` table and limits the result to 10 rows.
Therefore, there are no mistakes to correct, and the original query can be reproduced as is:
```sql
SELECT * FROM Artist LIMIT 10;
```
[
{
name: 'query-sql',
args: { input: 'SELECT * FROM Artist LIMIT 10;' },
type: 'tool_call',
id: 'call_a8MPiqXPMaN6yjN9i7rJctJo'
}
]
[{"ArtistId":1,"Name":"AC/DC"},{"ArtistId":2,"Name":"Accept"},{"ArtistId":3,"Name":"Aerosmith"},{"ArtistId":4,"Name":"Alanis Morissette"},{"ArtistId":5,"Name":"Alice In Chains"},{"ArtistId":6,"Name":"Antônio Carlos Jobim"},{"ArtistId":7,"Name":"Apocalyptica"},{"ArtistId":8,"Name":"Audioslave"},{"ArtistId":9,"Name":"BackBeat"},{"ArtistId":10,"Name":"Billy Cobham"}]
Here are 10 artists from your database:
1. AC/DC
2. Accept
3. Aerosmith
4. Alanis Morissette
5. Alice In Chains
6. Antônio Carlos Jobim
7. Apocalyptica
8. Audioslave
9. BackBeat
10. Billy Cobham
API reference
For detailed documentation of all SqlToolkit features and configurations head to the API reference.